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A Simple Approach to Mode Analysis for
Parabolic Waveguides

Charles S. Kenney, Associate Member, IEEE, and P. L. overfelt, Member, IEEE

Abstroct —Difficulty in obtaining accurate values for parabolic cylin-

der timctions has been an impediment to mode analysis for parabolic
waveguides. A simple method, based on one-dimensional analytic con-

tinuation, is presented which gives essentially exact values for these
functions; i.e., the relative error in the computed result is on the order of

the machkie round-off. When supplemented with a Newton-Poisson
shooting method and simple homotopy techniques, this continuation
method can be used to find the TE and TM mode eigenvalues, and
associated separation constants, for arbitrary parabolic domains. These

methods are then used to compute a power handling efflciqncy factor for
a range of parabolic regions.

I. INTRODUCTION

w

E consider parabolic cylinders of uniform cross section
in the confocal parabolic coordinates (~, q, z ), which

are related to rectangular coordinates (X, Y, Z) via

X=;(H) Y=q.g Z=z (1)

(see Fig. 1). The cross sections of interest consist of the
interior regions Q = Q(fo, qo) bounded on the right by the
curve q = qO and on the left by the curve $ = go.

Assuming a uniform, perfectly conducting waveguide of
parabolic cross section with e– @zei~t dependence, we use

H$= :

z

where $ satisfies

$xx+$YY=-k2$ in Q (2)

subject to the boundary conditions,

EZ=O on dQ (TM modes) (3)

or

~Hz
—=0
an

on Ml (TE modt!s). (4)

Here do denotes the boundary of 0, a/an is the outward
normal derivative, and variable subscripts indicate differenti-
ation. In (2), k2 = k; – ~2 and k; = 02COW0.
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Fig. 1. Confocal parabolic regions.

Expressing (2) in parabolic coordinates gives

+gt +@.. = - k2(~2+ q2)@. (5)

Using separation of variables with @= U(&)V(q) we find

Ugg+(k2f2+a)U=0 (6)

Vqq+(k2q2–a)V=0 (7)

where a is the separation constant. Equations (6) and (7)
must be supplemented by the boundary conditions

L((go)=o V(qo) = O (TM modes) (8)

or

Ug(fo) = o, Vv(q,) = P (TE modes). (9)

Although (6) and (7) can be solved for any a and k, the
boundary conditions (8) and (9) are satisfied only at discrete
pairs (a, k), when $0 and q. are fixed.

In the following section, we show that solutions to (6) and

(7) can be computed via one-dimensional analytic continua-
tion. Section HI discusses a Newton–Poisson shooting
method for finding the separation constants, a, and eigenval-
ues, k, for fixed f{l and qf~. This method is easy to use and
reveals some inaccuracies in previously published work. In
particular, Tables I and II give pairs of values (a, q) = (a /2k,

~) to seven significant digits for the case go= qo, and
show that some entries in similar tables from [1] have only
one digit of accuracy, The values in Tables I and II were
used to generate (via a simple homotopy method) the eigen-
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values of the first nine Tlvf modes and the first eight TE
modes for fO = 1 and 0.1< q. <1, as illustrated in Figs. 6-9.
These figures show that the TM modal ordering given in
[2, pp. 1401-1402] is incorrect (since the TM modes immedi-
ately following k~l, klq should be kqo and k04 rather than
kzz). Highly accurate polynomial/rational approximations of
the separation constants and eigenvalues are also given in
this section for the first three TM and TE modes for 0.1< qO
<land &O=l.

The last section of this paper considers selecting TO (for
f.= 1) so as to optimize the power handling capability [31,
[20] of the parabolic waveguide. Fig. 10 shows that there are
two local maxima of the power hanldling efficiency factor, -y,
for O <q.< 1. As in [4], both of tlhese maxima occur at qO
values for which the second and third TE mode eigenvalues
are equal. The largest of these y values is 0.4600, which
occurs at TO= 1, and gives a symmetrical cross section to the
parabolic waveguide. This compares well with y = 0.4653 for
the 2:1 rectangle and y = 0.4698 for an ellipse of eccentricity
e = 0.8546.

II. ANALYTIC CONTINUATION

In order to treat (6)–(9) in a systematic manner, we use

the normalized functions, u and u, where

U(izzg)= u(g) (lo)

–2 I I 1 ( 1 I I I 1 I 1 1 I I ~

o 2 4 6 8 10
x

Fig. 2. Cosinelike parabolic cylinder function for a =1.
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This leads to

x’()Uxx+ ~+; U=(I

x’

()
Uxx+ ~–: Ll=o

x
(11)

Fig. 3. Divergenceof the single-stepTaylor seriesmethod,

60

(12)

40

(13) x
\ {

20
where x = fif for (12) and x = ~2k q for (13), with

U(vmgo)=o u(imqo) = o (TM modes) o
(14)

F’I’’’’ l’i’’l”’’’I’’’’ l”/

–4 –2 o 2 4

U.(m!fo) = o

,

zJx(mT-/o)=o (TE modes). Fig. 4. Even TM mode zero curves for u(rn values) and u(n values).

(15)

Both (12) and (13) have the form The higher values of y. can be found from the recursion

x’()yxx+ ~+a J) =(). (16)

The solution to (16) can be expressed in terms of Whit-
taker functions [5], [6] or Weber functions [7]-[9] but these
methods are more useful for exterior parabolic problems.
Another approach [10] is to expand y in a Taylor series
about x = O:

n

Y(x) =yo+ylx+. ..+yn; +.. . (17)

where yn is the nth derivative of y at x = O. We may assume
that y. and yl are given (in fact yO = 1, yl = O generates the
even, cosinelike solution to (16) ias illustrated in Fig. 2;

,Yo= O, YI = 1 generates the odd, sinelike solution to (16)).

1
Yn=–aYn.z –_#@(~-3)Yn.4. (18)

On finite precision computers, the expansion (17) provides

accurate values for y(x) if x is small. However, as x in-
creases, destructive cancellation of large positive and nega-
tive terms leads to an unnecessary loss of accuracy. For
example, Fig. 3 shows that the use of (17) leads to divergence
starting at about x = 1.8 for the even solution to (16) with
a=l.

This problem can be avoided by taking several small
Taylor steps rather than one large step, This can be done by
using the Taylor expansion of y about an arbitrary point Xo:

h“
y(xt~+h) =y{~+ylh+. ..+y~fi+ . . . (19)
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where y. now denotes the nth derivative of y at X=xo. By
substituting x=xo+h into (16), the higher order values of

y. can be generated by

(4a + x;) (n-2)xoy _,
yn=–

4 Y.-2– ~ n

(n-2) (n-3) yn_,+ ~20)
—

4

Differentiating (19)withrespecttoh gives theseriesexpan-
sion for yX:

/J-l

y.(~o+h) =yl+y2h+”””+yn ~n_l) !+”””. (21)

Thus to evaluate y at x, given y(0) and YX(0), set h = x \N
for N large enough so that lhl is small, say Ihl < 0.1; then
evaluate y(h) and yX(h)by (19) and(21). Proceeding sequen-
tially, evaluate y and yXat ihforl< i< N. The sums in(19)
and (21) are truncated so that the pseudorelative error is less
than a prescribed tolerance value e. That is, pick n large
enough so that ‘

lyn+lhn+ll 1
(relative error test for y)

(n+l)! “ l+ly(xo)l ‘E’

(22)

and

Iyn+,hnl 1
l+lyx(xo)l ‘E (relative error test for yX).

n!

(23)

The above method is really just a one-dimensional version
of analytic continuation [11] and is sometimes referred to as
a constant-step variable-order Taylor method [12]. The accu-
racy of the analytic continuation method was checked by
using theordinary differential equation solver LSODE [13],
which empldys error monitoring procedures such as those
described in [14]. In all computations the analytic continua-
tion method gave at least 11 digits of accuracy and because
of its specialized nature was ten to 100 times faster than the
LSODE solver.

HI. NEWTON–POISSON SHOOTING METHOD

By combining features of the Poisson shooting method [15]
with the vector form of Newton’s method [12], we can solve
the second-order ordinary differential equations (12) and
(13) subject to (14) or (15) for fixed values of go and qo.

For vector valued functions, f: R“ + R“, Newton’s method
of solving f(o)= O consists of an iterative procedure:

ok+’ =(l)’ -(vf(a)’))-’f((d’) (24)

where UOeRn is given, and Vf = (dfi / d~j) is tile gradient
matrix of ~.

This can be applied to the problem of solving for (a, k),
such that (12)-(15) are satisfied, by setting ~ = (a, k ) and
letting

(TM modes) (25)

or

fl(u, k) = u.(fi60) fz(u,k) = U.(~qo)

(TE modes) (26)

with

[

afl /&7 afl /dk
Vf(a, k) = 1af2 /da af2 /ak “

(27)

The values of f, and f2 are easily computed by the methods
of the m-evious- sectiori, and the derivatives in (27) can be
approximated by using second-order central difference for-
mulas. In this method, both the values go and q. and the
initial conditions u, UX, o, and UXare fixed, so that (25)–(27)
do not correspond exactly to the classical Newton–Poisson
shooting method [15] in which only some of the initial
conditions are suecified.

The iteration- (24) converges quadratically to the exact
solution, provided that the initial guess, 0° = (ao, ko), is
sufficiently close to the exact solution. It is the invertibility of
the madient matrix (see the Atmendix) which accounts for
this ~apid convergence. This r~i~es the question of how to
select the initial values of a. and ko. A lucid account of this
problem is given in [2], which we paraphrase below.

Consider the problem of finding u and k for even TM
modes. Let a have an arbitrary fiked value and let u and u
satisfy

X2
u ()xx+ ~+a u=(3 u(o) = 1 Ux(o) = o

(28)

X2()vxx+ ~–a v=O v(o) = 1 Ux(o) = o.

(29)

Then u has simple zeros O < z~ < z~ < z] . “ “ from which
we may define the values

(30)

(Even subscripts are used to indicate that u is an even
function.) Similarly, u has simple zeros O < z; < Z; < z:

. . cand we set

(31)

The values k: and k; vary with a, and if k; = k; for
some value a = am~ then for knn equal to the mutual value
of k; and k;, the pair (amn, kmn) forces fl and f2 to be
zero in (25). See Fig, 4, which illustrates the intersections of
these zero curves for the special case t$o= q.= 1. Similarly,
for the odd TM modes, if we let u and u satisfy (28) and (29)
with the initial conditions u(0) = O,UX(0) = 1, u(O) = O,u.(O) =
1, then u has simple zeros O < z: < z: < z{ “ . . which inter-
lace the even zeros z~m, and u has simple zeros O < z; <
z: < zj- , , 0which interlace the even zeros z~., Defining k;
and k; as in (30) and (31), we again set am. = a if k~(a) =
kj (a) (w, n both odd). This is illustrated in Fig. 5, and it
should be noted that we are only interested in odd-odd or
even-even intersections as discussed in [2].

Plots such as those in Figs. 4 and 5 provide approximate
values for (am., km.) which can then be refined as in
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Fig. 5. Odd TM mode zero curvesfor u(m values) and U(H values).

(24)-(27). For the TE modes we use the same procedure but
work with the zeros of UX and UI rather than u and u. Plots
of these values are similar to the TM case.

This was done for the special case qO =&O= 1 and the
results are given in Tables I and II for m, n <8 in the form

(am., q~n) where q~. = =. (Compare with the results
in [11.)

Remark: The cumbersome m@hod of graphically deter-
k ) for arbitrary <0 and ijO can be avoided bymining (am~, ~n

using the values in Tables I and II (or those in [1]) in the
following way. Starting with (a~n, kmn) fr~m the tables, move
in small steps from (to, qO) = (1, 1) to (<0, ijo) by using the
Newton-Poisson method to find (am., km.) at each step with
the previous values used as starting values. This method is
very fast and was used to generate the values of amn and
km. for m + n <4 (i.e., the first nine TM modes and the first
eight TE modes) with &O= 1 and 0.1< q. <1, as illustrated
in Figs. 6–9. These values were also used to generate the
highly accurate polynomi~l/rational approximations given in
Tables III and IV. A comparison of the lowest TE and TM
eigenvalues from various sources [1], [2], [10], [19] is given in
Table V.

IV. POWER HANDLING CAPABILITY OF PARABOLIC

WAVEGUIDES

In [3], Baum defines the efficiency factor, y, for a planar
domain 0 as

‘=w?’’[g:i,~’32)
where O < k ~< k, are the tsvo lowest nonzero TE eigenval-
ues and VI is the TE eigenfunction corresponding to k,.

Using the methods of the previous NO sections, we inves-
tigated -y = y(qO) for confocal parabolic domains, Q, with

C$O= 1 and 0.1< no <1. (The integral m the right-hand side
of (32) was evaluated numerically by using a 24-point Gauss-
ian product formula, which is exact on polynomials up
through order 47.) The results are given in Fig. 10, where we
see that the overall maximum occurs at qO = 1 with -y(l)=
0.4600. A secondary maximum occurs at TOs 0.14083 with

Y(O.14083) ~ 0.4234. Intermediate between these maxima, y
attains a minimum value of zero at ‘~0 = 0.31297. As per the
discussion in [4], these extreme vqlues occur at crossing
points for the second and third TE eigenvalues (for the

maxima at q. = 1 and q. = 0.14083) or the crossing point for
the first and second TE eigenvalues (qO = 0.31297).

We can interpret these results by comparison with the
efficiency factor for a rectangle with aspect ratio r =
height/width. In this case the maximum efficiency factor is
0.4653 = (3/64)1/4 which is attained at r = 2 and r = 1/2.
Between these two maxima, the efficiency factor reaches a
minimum of zero at r = 1.

For a confocal parabolic region, Q, with &O=1, the aspect
ratio of the height to the width is given by

4?70

‘=l+q; ”
(33)

If the efficiency factor depended only on r, we would then
expect y to be maximized at r = 2 and r = 1/2 and mini-
mized at r = 1 by analogy with the rectangle. That is, we
would expect from (33) to see maximum efficiency at q. = 1
(for r =2) and at q.= 4 – ~ = 0.12702 (for r = 1/2). The

corresponding minimum would then be at q.= 2 – & =
0.26795 (for r = 1). Since these values are close to the true
values of q. = 1, no = 0.14083, and q. = 0.31297, we con-
clude that for parabolic waveguides the aspect ratio of the
cross section is of prime importance in determining the
power handling capability—just as in the case of rectangular
and triangular waveguides [16], [17], [20].

V. CONCLUSION

Mode analysis for confocal coaxial parabolic regions is
greatly simplified by using analytic continuation to evaluate
parabolic cylinder functions. When combined with
Newton-Poisson shooting and homotopy methods, this con-
tinuation technique easily generates the separation constants
and eigenvalues of arbitrary parabolic regions, and has been
applied to the problem of determining power handling capa-
bilities for such regions.

APpENDIX

NONSINGULARITY OF NEWTON’S METHOD

We need two technical lemmas to show that the gradient
matrix, Vf, in (24) is nonsingular.

Lemma 1: Let y satisfy (16) with y2(0) + y$(0) # O. Then,
for any X.> O,y2(xo) + y~(xo) + O. Moreover, if ( y(0), yX(0))
= (1, O) or (O, 1) and YX(XO)= O, then yxX(xo) # O.

Proof If y2(xo)+ y~(xo) = Ofor some XO, then y(x) = O
for all x by (19) and (20). This would contradict the assump-
tion that y2(0) + Y:(O) #0, Now suppose that yX(xo) = O. By

(16) YXX(XO) = –(xa/4 + a)y(xo). Since Y(xo) # O,YXX(XO)is
nonzero unless a = – x; /4, Case 1: suppose that

(Y(0), YX(0)) = (1,0) and that a = – x~/4. Then YXX(X) =
–(x2/4+ a)y(x) =(x~/4– x2/4) y(x)> O, and yX(x) is in-
creasing for x near zero. Thus y(x) and YX(X) increase
together until (xi /4 – x2/4) y(x) changes sign, which occurs
at x = X[). In particular, this means that at x = Xo, y. is
nonzero, which is a contradiction. Case 2: suppose that

(Y(0), YX(O))= (O, 1) and a = – x~/4. Again, yXX(x) >0 for
0< x < X(J and yX(x(j) >0, which leads to a contradiction.
Thus in either case if ( y(0), yX(0)) = (1, O) or (O,1) and YX(XO)
= O, then YXX(X[J)# O.

Lemma 2: Let k: = k~(a, fo) and k; = k~(a, qo) be de-
fined by (30) and (31) respectively. Then dk~ /da< O and
dk; /da> O.
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TABLE 1

VAUJES CIFTHE SEPARAmONCONSTANT,a~~ (UPPER NUMBERS),AND THE EIGENVALUE PARAMETER, qmn = K (LO~,R NLW,RS),

FORTHE TE MODES WHBRE [0 = q“

~=o 0.810270 1.937563 3.168368 4.429902
2.701082 3.641106 4.364091 4.976563

~=1 0.0 1.331693 2.547107 3.796421
2.057677 3.213575 4.020361 4,680999

~=z – 0.810270 0.0 0.572512 1.415250 2.412445
2.701082 3.736848 4.501579 5.142995 5.704098

~=3 – 1.331693 0.0 0.932287 1,900718
3.213575 4.139591 4.835016 5.431798

~=4 – 1.937563 –0.572512 0.0 0.513563 1.251464
3.641106 4.501579 5.158541 5.735390 6.254941

~=5 – 2.547107 – 0.932287 0.0 0.817493
4.020361 4.835016 5.455439 6.001765

~=6 – 3,168368 -1.415250 –0.513563 0.0 0.481947
4.364091 5.142995 5.735390 6.261505 6.744475

~=7 – 3.796421 – 1.900718 -0.817493 0.0
4.680999 5.431798 6.001765 ‘ 6.507896

~=8 – 4.429902 – 2.412445 – 1.251464 –0.481947 0.0
4.976563 5.704098 6,254941 6.744475 7.196398

TABLE 11

VALUES OFTHE SEPARATIONCONSTANT,a ~n (UPPER NUMBERS),AND THE EIGENVALUE PARAMETER, q~. = K (L.wm Nu.B.Rs),

FORTHE TM MODES WHERE <0 = q.

~=() ~=1 rrl=2 m=3 m=4 m=5 m=6 m=7 m=8

~=() 0.0
2.832878

~=1

~=z – 0.620562
3.766949

~=3

0.620562
3.766949

1.545732
4.501991

2.621655
5.123188

3.756773
5.670876

1.024922
4.153264

0.0
3.335199

2.072334
4.823688

3.183781
5.404627

0.0
4.526837

0.534856
5.170907

1.312944
5.738399

2.245691
6.249205

-1,024922
4.153264

0.0
4.860511

0.859836
5.463204

1.764771
5.999933

~=~ – 1.5475732
4.501991

~=5

~=6 – 2.621655
5.123188

~=7

~=8 –3.756773
5.670876

– 0.534856
5.170907

0.0
5.747330

0.494870
6.268620

1.197973
6.747111

– 2.072334
4.823688

– 0.859836
5.463204

0.0
6.014112

0.780581
6.512936

– 1.312944
5.738399

– 0.494870
6.268620

0.470105
7.201158

0.0
6.751731

–3.183781
5.404627

– 1.764771
5.999933

– 0.780581
6.512936

0.0
6.980356

–2.245691
6.249205

– 1.197973
6.747111

-0.470105
7.201158

0.0
7.625300

ova40

a 20

a O.

–lo -a,,

all
a

a~z

--20 aoz~

a13

-.3” .-

x

PI i

0.0 0.2 0.4 0.6 0.8 1.0
~o

0,0 0.2 0.4 0.6 0.8 1.0
no

Fig. 6. TM mode eigenvalues, Fig. 7, TM mode separation constants,
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Fig. 9. TE mode separation constants.
~.g. 8. TE mode eigenvalues.

TABLE III

EIGENVALUE AND SEPARATIONCONSTANTAPPROXIMATIONSFORTHE FIRST THREE TE MODES

Maximum Relative Error

Mode m, n Approximation of the Separation Constant, a, and the Eigenparameter q = @ ~0 Inte~al (Percent)

TE 1, 1

TE 2,0

TE O, 2

a = 2.596929 – 5.094294/q. + 3.870710/q~ – ~.651439/q~ + 0.2780933/q~

q = 0.~312255 + 2.268693/n. – 1.038856/TJ; + 0.3486636/q; – 5.20495 X 10-2/’q~
a = 1.78076 – 2.734267 /q. + 1.296147/q~ – 0.396096/q~ +4.73622 x 10–2/q~

q = 0.669376+ 1.fJ71q59\q0 – 0.61J3z5/’qj + MqQ5z\q: – 1.49289 x 10-2\d

a = 1.144576– 1.462181/q0 +0.334325 /q. –7.02466x 10–2/q~ +5.64386x 10–3/q~

q = 0.849418+ 1.52112/To – 0.352046/’q; + 5.69694 X 10-2/q; – 3.94283 X 10-3/q~
a = 0.689404 –0.871946/q0 +4.44974x 10–2/q~ –6.46391 X 10–3\q~ +3.44078x 10–4/T~

q = 1.164598+1.130233/q. –0.168161/;~ + 1.81028x 10-2/q; –8.31538x 10-4/qj
a = 0.517328 –0.729115/q. –4.40151 x ~~-4/q~ – 1.19650x 10–4\q~ +5.39856x 10–6/q$

q = 1.626340 +0.768274\q0 –6.03590x 10-2/q; +3.6451 X 10-3/q# –9.51838x 10-5/qj
a = – 5.15875X 10–2 + 0.370382qo + 0.306448q~ + 0.365604q~ – 0.180576q#

q = 3.755891+ 3.67244x 10-2qo – 2.616730q; + 2.034049q; – 0.508851q;
a = –3.40302x 10–2 +0.237057q0 +0.0661645q~ –3.814443x10–2q~ – 1.31087x 10–2q~

q = 3.709501+ 0.274805qo – 3.073924T; + 2.423319q; – 0.632805q;
a = 2..548O4X10–3–4.54712x 10–2~o + 1.484977q~ – 1.ll15q~ +0.51525~$

q = 3.727512 +o.125543qo –2.6064987; + L768076q: –0.286116~:
a = 3.37434x 10-4 –9.72281 x 10–3T0 + 1.269806q~ –0.538728q~ –5.43081 x 10–2q#
q = 3.736535+ 8.85305x 10-3qo – 2.0283727; + 0.46591q; + 0.838816q;
~ = – 0,124808+ (1.840906/qo – 2.150025/q; + 0.886461/q; – 0.139533/7;

q = –0.223678+5.144419/q. –3.286735/q0 + 1.268121/q. –0.201045/q
a = 0.216079 – 0.417672\qo – 0.866347/q~ + 0.302681/q~ – 3.96405 x 10–~/q~

q = 0.371520 +3463166/qo – 1.495452/m? +0.415015/7; –4.78368x 10-2/qf
u = 0.75421 – 1.524952/q. –6.27731 X 10-3\q; +3.94451 X 10-3/q~ –5.13098x 10-4/q;
q = 0.993797+2.219658/q. – 0.555766\q: + 9.68244 X 10-2/q: – 7.11685 X 10-3\q:
a= 0.772631 –l.562411/qo +1.84487x10–2/q; –2,79513X 10–3/T/: +L45653X10-4/q~

? = 1.554807+ 1.506145/qO –0.211694/q; +2.23491X 10-2/q: – 1.02011 X 10-3/q:
a = 0.689837- 1.496185/q. – 1.65905x 10–3/q~ –4.98358x 10-5/q~ +3.5604x 10-6/q~

q = 2.110509 +l.069456/qn –8.12742x 10-2/~? +4.80549 X10-3 /Tr; -l.23783X10-4/q~

[0.7, 1.0]
[0.7, 1.0]
[0.5, 0.7]
[0.5, 0.7]
[0.3, 0.5]

[0.3, 0.5]
[0.2, 0.3]
[0.2, 0.3]
[0.1, 0.2]

[0.1, 0.21
[0.7, 1.0]
[0.7, 1.0]
[0.5, 0.7]
[0.5, 0.7]
[0.3, 0.5]
[0.3, 0.51
[0.1, 0.3]
[0.1, 0.3]
[0.7, 1.0]
[0.7, 1.01
[0.5, 0.7]

[0.5, 0.7]
[0.3, 0.5]
[0.3, 0.5]
[0.2, 0.3]
[0.2, 0.3]
[0.1, 0.2]
[0.1, 0.2]

0.002
0.0001

0.0005
0.00006
0.003

0.0007
0.0003
0.0003
0.0006

0.005
0.0002
0.00006
0.00006
0.00002
0.00003
0.00003
0.0002
0.00004
0.00006
0.0002
0.0004

0.0002
0.0005
0.002
0.00006
0.0003
0.0003
0.005

Proof By (28)–(31), k~(a, TO)= kj( – a, qt~) so we
need only show that dk~ /da <0. By definition, k~ is the
mth zero of u in (28). By the Sturm separation theorem [18],
the zeros of u and UX are simple and interlace each other.
We now show that the distance between a zero of u and the
next consecutive zero of UX decreases with a. Similar argu-

ments show that the distance between a zero of UX and the
next consecutive zero of u also decreases with a, thus
completing the proof.

Suppose that U(xo) = O and uX(xtl) >0. Let d(xo) = O and
rlX(xo) = UX(XO) with UXX = –(x2/4 + a)u, fiXX = –(x2
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TABLE IV
EIGENVALUE AND SEPARATION CONSTANTAPPROXIMATIONSFORTHE FIRST THREE TM MODES

Maximum Relative Error

Mode m, n Approximation of the Separation Constant, a, and the Eigenparameter q = w To Inte~al (Percent)

TM 0,0 a = 1.70632-3.557211/To+ 2.942827/q~ – 1.319285/q~ + 0.227349/q~
q = 4.48325X 10-2+4.810751/q. – 2.785871/q; + 0.875188/w; – 0,112022/77f
a = 1.027789- 1.590098 /q. + 0.79150/q~ – 0.26778/q~ + 3.36409X 10-2/TIj
q = 0.268061 +4.220208\qo – 2.199295\q; + 0.615888/q; - 6.89754x 10-2\qj
a = 0.560393 – 0.649577\qo +7.60503 X 10–2/q~ – 2.40106 X 10–2/q~ + 2.26595 X 10–3/q~
q = 1.220774+2.369542/q. – 0.840459/qj -t 0.168804/q; -1.33536 X 10-2\qf
a = &388644 -0.413136/q. –4.63114x 10–2/rI~ +4.17285x 10–3\q~ – 1.69243x 10–4\q~

q = 2.312298+ 0.962536/qo – 0.153552/q; + 1.84657 x 10-2/q; – 9.25839 X 10-4/q;
a = ().487549 – 0.487708 /q. – 2.50051 X 10-2\q~ + 1.43627 X 10-3/q~ - 3.58552x 10-5\q~

q = 2.765350 +0.588592/q. – 3.64749 X 10-2/q;+ 2.0048X 10-3/q; – 5.00854x 10-5\q~
TM 1,1 a = 4.501492– 9.12098 /q. + 7.266212/q~ – 3.193323/q~ +0.546599/qf

q = 0.395787+ 1.8z1031/qo - 2.600728/q3 + O.gzgqsg)q; - 0.10928\q:
a = 2.86579– 4.386343 /q. + 2.096153/q~ - 0.670136/qj + 8.24485x 10-2/q~
q =0.630917+4.19092/q. - 1.965587/q;+ 0.542911/q; – 6.09916 X 10-2/qf
a = 1.752483 – 2.141137 /q. + 0.384543/q~ – 8.57397X 10–2/q~ + 7.08389X 10–3/q~

q = 1.472579+ 2.549088/qo - 0.754941\q~ + 0.14289/q: – 1.10178X 10-2/q:
a = 1.196551– L41065\qo +2.13504x 10-2/q~ –4.88571 X 10–3/q~ +2.94922x 10–4/q$
g = 2.346607+1.422418/q. – 0.204756/q; + 2.24217X 10-2/q; – 1.05329 X 10-3/q;
a = 1.050923 -1.286222/q. – 1.87849X 10–2/q~ + 9.01076 X 10–4/q~ -1.94463 X 10–5/’q~

q = 2.903135 +0.978869\qo – 7.04125 x 10-2/q0 + 4.10207 x 10-3/qo – 1.05171 X 10-4\q~
TM 2,0 a = – 2.385995+ 8.590482qo – 12.73055q~ + 9.811075q~ – 2.664454q~

q = 6.093106- Z.599687T?0 - 9.91782x 10-2T; + 0.45772%; – 8.50192x 10-2q:
a = – 3.199621+ 13.4697qo -23.74494 2 +20.89869 3 – 6.861979q~to qo
q = 6.843306- 6.925676qo + 9.312155qo - 8.695138qo + 3.271385q:

a = – 5.356343+ 31.04948q0 – 77.79276q~ + 95.15671q~ – 45.31746v~

q = 7.952511 – 15.92431qo + 36.85081q~ – 46.36436q: + 22.6%98q:
a = – 8.586632+ 68.25198qo – 239.4341 2 + 409.1163 3 – 275.2575TJ#to lo
q = 9.274474– 31.02869qo + 10 L96667qo – 171.8812qo + 113.9531q:
a = – 13.35043+ 145.7653qo – 715.2023~~ + 1714.301q~ – 1625.025q~
q = 10.70829– 54.1884qo + 243.1092q: – 556.4399q; + 509.0721qfl
a = – 23.22342+ 386.3231qo - 2932.606q~ + 10867.95q~ – 15885.19q~
a = 13.04974– 110.8061no + 761.2537n; – 2681.125n~ + 3798.857TJfl

[0.7, 1.0]
[0.7, 1.0]
[0.5, 0.7]
[0.5, 0.7]
[0.3, 0.5]
[0.2, 0.5]
[0.2, 0.3]
[0.2, 0.3]
[0.1, 0.2]

[0.1, 0.2]
[0.7, 1.0]

[0.7, 1.01

[0.5, 0.71
[0.5, 0.7]
[0.3, 0.5]

[0.3, 0.51
[0.2, 0.3]
[0.2, 0.31
[0.1, 0.2]
[0.1, 0!2]
[0.7, 1.0]
[0.7, 1.0]
[0.5, 0.7]
[0.5, 0.7]
[0.35, 0.51
[0.35, 0.51
[0.25, 0.351
[0.25, 0.35]
[0.175, 0.25]
[0.175, 0.25]
[0.1, 0.1751
[0.1, 0.1751

0.002
0.00003
0.0006
0.0002
0.002
0.003
0.00004
0.0004
0.002
0.003
0.003
0.00003
0.0008
0.0002
0.003
0.002
0.0002
0.0003
0.0002
0.004
0.0005
0.0002
0.002
0.0002
0.003
0.0003
0.002
0.0003
0.003
0.0003
0.03
0.004

TABLE V

COMPARISON OF EIGENPARAMETERS, qmn = =, AND SEPARATIONCONSTANTSa.. FOR to = q. = 1 FROMVARIOUS SOURCES

Kehney-Overfelt Zagrodzinski Morse–Feshbach Spence-Wells Larsen
Mode m,n ~na Qmn a mn qmn amn %. inn m.a q amn qmn

TM 0,0
TM 1,1
TM 2,0
TM 3, 1
TM 4,0
TM 2,2

TE 1,1
TE 2,0
TE 3, 1
TE 4,0
TE 2,2
TE 5,1
TE 3,3

0.0
0.0
0.620562
1.024922
1.545732
0.0

0.0
0.810270
1.331693
1.937563
0.0
2.547107
0.0

2.832878
3.335199
3.766949
4.153264
4.501991
4.526837

2.057677
2.701082
3.213575
3.641106
3.736848
4.020361
4.139591

0.0 2.83 0.0
0.0 3.34 0.0
0.58 3.77 -
1.02 4.16 -
1.54 4.49 -
0.0 4.53 0.0

0.0 2.06 -
0.81 2.71 -
1.33 3.21 -
1,94 3.64 -
0.0 3.74 -
2.54 4.02 -
0.0 4.14 -

2.8327
3.3353

4,5268

0.0 2.833 0.0 2.85
0.0 3.335 0.0 3.35

0.62 3.78,—
1.02 4.16

0.0 4.527 0.0 4.50

0.0 2.061 0.0 2.08
0.81 2.72
1.33 3.22

3.737 0.00.0 - 3.73

0.0 4.147 0.0 4.14

/4+ a + E)r2, for ~ >0. Let xl and 21 denote respectively
the first zero larger than XO of UX and fix. Now define
o = fix = UX, then ax = –(x2/4+ a)~ – cfi.

As in Lemma 1, we may assume that x~/4 + a >0. At
x = XO, or = O, COX= O, and OJXX= – er2X(xO) <0. Thus O(xo
+8) <0 for 8 small and positive. Now suppose that o(q)= O
for XO< Xz <21. Then Ox(xz) = – ●d(xz) <0 since d is posi-
tive on (xO, 21). This implies that ro <0 over [xO, -i?I] and
hence 0< r2X< UX over the same interval. That is, the dis-
tance between the zeros of u and UX decreases as a in-
creases. Similar arguments hold for U(xo) = O and UX(x{)) <0.

Remark: Essentially the same proof shows that dk~ /3a<
0 and dk~ /da >0 for the TE modes.

Theorem: The gradient matrix, V~, is nonsingular at (a, k)

= (am., km.) for m >0, n >0.
Proofi First conside~ the TM mode case: f Ja, k) =

u(fifo, u), fz(a, k) = u(~qo, a), where the second argu-
ment denotes the dependence on a. The gradient matrix is

P

nonsingular if det V~ = (d~l /da)(d /~k) –

(dfl /ilk)(df2 /da) #O. By definition, U( 2k~(a) go, a) = O,

u(@k~ ( a ) q{), a) = O. Differentiating with respect to a gives
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Fig. 10. Parabolic waveguide efficiency factors.

dfl /da = ua = UX(<O/2*Xdk~ /da), df2 /6a = Va =

vX(qo/2~2k~ )(dk; /da). Also dfl /dk = uXto/2~,

df2 /dk = uXqO /2~. Therefore, at a = a~n and k: = k;

= kmn, det Vf = (&oqouXvz /8kmn)(dk,; /da – dk~ /da) + O
since UX, UX, and (dkj /da – dk~ /da) are all nonzero by

Lemmas 1 and 2.
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