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A Simple Approach to Mode Analysis for
Parabolic Waveguides

Charles S. Kenney, Associate Member, IEEE, and P. L. Overfelt, Member, IEEE

Abstract —Difficulty in obtaining accurate values for parabolic cylin-
der functions has been an impediment to mode analysis for parabolic
waveguides. A simple method, based on one-dimensional analytic con-
tinuation, is presented which gives essentially exact values for these
functions; i.e., the relative error in the computed result is on the order of
the machine round-off. When supplemented with a Newton—Poisson
shooting method and simple homotopy techniques, this continuation
method can be used to find the TE and TM mode eigenvalues, and
associated separation constants, for arbitrary parabolic domains. These
methods are then used to compute a power handling efficiency factor for
a range of parabolic regions.

1. INTRODUCTION

E consider parabolic cylinders of uniform cross section

in the confocal parabolic coordinates (£,7, z), which
are related to rectangular coordinates (X,Y, Z) via

1

X=s(r-8)  Yemt =2 ()
(see Fig. 1). The cross sections of interest consist of the
interior regions Q = Q(&;,n,) bounded on the right by the
curve 1 =7, and on the left by the curve £ = §,.

Assuming a uniform, perfectly conducting waveguide of

parabolic cross section with e ~*#%e’“* dependence, we use

where ¢ satisfies

Uxx t¥yy=—k inQ (2
subject to the boundary conditions,
E,=0 ondQ (TM modes) 3)
or
9H,
o 0 ondQ (TE modes). (4)

Here 3€) denotes the boundary of , 8 /dn is the outward
normal derivative, and variable subscripts indicate differenti-
ation. In (2), k% =k3 — B2 and kZ = w3epuq.

Manuscript received January 23, 1990; revised November 19, 1990.
This work was supported in part by the National Science Foundation
under Grant DMS88-00817 and by the Air Force Office of Scientific
Research under Contract AFOSR-89-0167.

C. S. Kenney is with the Electrical and Computer Engineering De-
partment, University of California, Santa Barbara, CA 93106, and the
Naval Weapons Center, China Lake, CA 93555.

P. L. Overfelt is with the Physics Division, Research Department,
Naval Weapons Center, China Lake, CA 93555-6001.

IEEE Log Number 9042353.

N0=1.0 £,=1.0

7¢=0.67 £,=0.67

7,=0.33 £,=0.33
70=0.0 £,=0.0
Fig. 1. Confocal parabolic regions.

Expressing (2) in parabolic coordinates gives
l//gg + ‘l‘m, =- k2(§2 + "72)¢-
Using separation of variables with ¢ = U(&)V(n) we find
U§§+(k2§2+a)U=0 (6)
V,m+(k2~q2—a)V=0 @)

where o is the separation constant. Equations (6) and (7)
must be supplemented by the boundary conditions
(8)

U(&) =0 V(ne) =0  (TM modes)

&)

or
Ug(£0) =0, Va(mg) =0 (TE modes). (9)

Although (6) and (7) can be solved for any « and k, the
boundary conditions (8) and (9) are satisfied only at discrete
pairs (@, k), when &, and 17, are fixed.

In the following section, we show that solutions to (6) and
(7) can be computed via one-dimensional analytic continua-
tion. Section III discusses a Newton—Poisson shooting
method for finding the separation constants, «, and eigenval-
ues, k, for fixed £, and n,. This method is easy to use and
reveals some inaccuracies in previously published work. In
particular, Tables I and II give pairs of values (a, q) = (a /2k,
V2k) to seven significant digits for the case &;= 74, and
show that some entries in similar tables from [1] have only
one digit of accuracy. The values in Tables I and II were
used to generate (via a simple homotopy method) the eigen-
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values of the first nine TM modes and the first eight TE
modes for ;=1 and 0.1 < 9y <1, as illustrated in Figs. 6-9.
These figures show that the TM modal ordering given in
[2, pp. 1401-1402] is incorrect (since the TM modes immedi-
ately following k,;, k{4 should be k,, and kg, rather than
k). Highly accurate polynomial /rational approximations of
the separation constants and eigenvalues are also given in
this section for the first three TM and TE modes for 0.1 < 5,
<land &=1.

The last section of this paper considers selecting 7, (for
£,=1 so as to optimize the power handling capability [3],
[20] of the parabolic waveguide. Fig. 10 shows that there are
two local maxima of the power handling efficiency factor, v,
for 0 < ny<1. As in [4], both of these maxima occur at 7,
values for which the second and third TE mode eigenvalues
are equal. The largest of these y values is 0.4600, which
occurs at ny =1, and gives a symmetrical cross section to the
parabolic waveguide. This compares well with y = 0.4653 for
the 2:1 rectangle and y = 0.4698 for an ellipse of eccentricity
e = 0.8546. -

II. ANALYTIC CONTINUATION

In order to treat (6)—(9) in a systematic manner, we use
the normalized functions, 1 and v, where

u(v2k¢) =U(¢) (10)
v(V2km)=V(n). (11)
This leads to
x? o« 3
uxx+(—4-+ﬁ u=>0 (12)
2 a o .
vxx+(7“'2—,€)v_ (3)
where x =v2k ¢ for (12) and x =2k n for (13), with
u(\/2_k§0)=0 v(\/ﬁno)=0 (TM modes)
(14)
ux(\/Z—kfo)=0 Ux(\/z—k”ﬂo) =0 (TE modes).
| (15)
Both (12) and (13) have the form
2
yxx+(z“+a)y=0' (16)

The solution to (16) can be expressed in terms of Whit-
taker functions [5], [6] or Weber functions [7]-[9] but these
methods are more useful for exterior parabolic problems.
Another approach [10] is to expand y in a Taylor series
about x =0:

n
y(x)=y0+y1x+-'-+y,,F+-'~ (17)
where y, is the nth derivative of y at x = 0. We may assume
that y, and y, are given (in fact y, =1, y, = 0 generates the
even, cosinelike solution to (16) as illustrated in Fig. 2;
Yo=0, y;=1 generates the odd, sinelike solution to (16)).
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Fig. 2. Cosinelike parabolic cylinder function for a = 1.
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Fig. 3. Divergence of the single-step Taylor series method.
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Fig. 4. Even TM mode zero curves for u(m values) and v(n values).

The higher values of y, can be found from the recursion

1
yn=—ayn—Z_Z(n—z)(n_3)yn—4' (18)
On finite precision computers, the expansion (17) provides
accurate values for y(x) if x is small. However, as x in-
creases, destructive cancellation of large positive and nega-
tive terms leads to an unnecessary loss of accuracy. For
example, Fig. 3 shows that the use of (17) leads to divergence
starting at about x =1.8 for the even solution to (16) with
a=1.

This problem can be avoided by taking several small
Taylor steps rather than one large step. This can be done by
using the Taylor expansion of y about an arbitrary point x,:

n

y(x0+h)=y(,+y1h+"~+ynF+--- (19)
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where y, now denotes the nth derivative of y at x = x,. By
substituting x = x, + h into (16), the higher order values of
¥, can be generated by

B (4a+x(2)) ~ (n~;2)x0

Yn= 4 Yn—2 2

n-3
(n=2)(n-3)
—— Vs

Differentiating (19) with respect to 4 gives the series expan-
sion for y,:

(20)

n—1

yx(x0+h)=y1+y2h+~-+yn(n <o (21)

'
Thus to evaluate y at x, given y(0) and y,(0), set A=x/N
for N large enough so that || is small, say |h| <0.1; then
evaluate y(k) and y (h) by (19) and (21). Proceeding sequen-
tially, evaluate y and y, at ih for 1 <i < N. The sums in (19)
and (21) are truncated so that the pseudorelative error is less
than a prescribed tolerance value e. That is, pick n large
enough so that

lyn+1hn+1| 1 .
. e,
(n+1)!  14+ly(xp)l

(relative error test for y)

(22)
and
s 1
n! 1+ |y, (xg)l

€  (relative error test for y,).
(23)

The above method is really just a one-dimensional version
of analytic continuation [11] and is sometimes referred to as
a constant-step variable-order Taylor method [12]. The accu-
racy of the analytic continuation method was checked by
using the ordinary differential equation solver LSODE [13],
which emplgys error monitoring procedures such as those
described in [14]. In all computations the analytic continua-
tion method gave at least 11 digits of accuracy and because
of its specialized nature was ten to 100 times faster than the
LSODE solver.

II1I. NEwroN—PoissoN SHooTING METHOD

By combining features of the Poisson shooting method [15]
with the vector form of Newton’s method [12], we can solve
the second-order ordinary differential equations (12) and
(13) subject to (14) or (15) for fixed values of &, and 7.

For vector valued functions, f: R” —» R", Newton’s method
of solving f(w)= 0 consists of an iterative procedure:

Wkt = 0k = (VF(0*)) ' f(oF)

where w’R" is given, and Vf=(3f; /dw)) is (e gradient
matrix of f.

This can be applied to the problem of solving for (a, k),
such that (12)-(15) are satisfied, by setting w =(a,k) and
letting

fila, k) =u(v2k &)

(24)

fala, k) = v(V2km,)
(TM modes) (25)
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or
fl(a7k)=ux(‘/2_]€§0) f2(a’k)=vx(mr'0)
(TE modes) (26)
with
I7j 2 d ok
N PV

The values of f; and f, are easily computed by the methods
of the previous section, and the derivatives in (27) can be
approximated by psing second-order central difference for-
mulas. In this method, both the values &, and 7, and the
initial conditions u, u,, v, and v, are fixed, so that (25)~(27)
do not correspond exactly to the classical Newton—Poisson
shooting method [15] in which only some of the initial
conditions are specified.

The iterafion (24) converges quadratically to the exact
solution, provided that the initial guess, w®={(ag, k), is
sufficiently close to the exact solution. It is the invertibility of
the gradient matrix (see the Appendix) which accounts for
this rapid convergence. This raises the question of how to
select the initial values of a4, and k. A lucid account of this
problem is given in [2], which we paraphrase below.

Consider the problem of finding a and k for even TM
modes. Let a have an arbitrary fixed value and let u and v
satisfy o

x? '
uxx+(7+a)u=0 u(0)=1 u (0)=0
| (28)
2
vxx+(7—-a)v=0 v(0) =1 v,(0)=0.
(29)
Then u has simple zeros 0< zy <z3 <zj ---from which
we may define the values
P R 2 (30)
m = 2 go .

(Even subscripts are used to indicate that u is an even
function.) Similarly, v has simple zeros 0 <zy <z <zj

-+ and we set
‘- 1z, 2
"2 Mo '

The values k;, and k, vary with ¢, and if &k, =k, for
some value a = a,,, then for k,,, equal to the mutual value
of k. and k;, the pair (a,,,, k,,,) forces f; and f, to be
zero in (25). See Fig. 4, which illustrates the intersections of
these zero curves for the special case &= ny=1. Similarly,
for the odd TM modes, if we let u and v satisfy (28) and (29)
with the initial conditions u(0) = 0,u,(0)=1,0(0)=0,v,(0)=
1, then u has simple zeros 0 < z; < z7 < z{ -+ - which inter-
lace the even zeros z3,,, and v has simple zeros 0 < z; <
23 < z3" - which interlace the even zeros z3,. Defining &,
and k; as in (30) and (31), we again set a,,, =4 if k;;(a)=
k, (a) (m,n both odd). This is illustrated in Fig. 5, and it
should be noted that we are only interested in odd-odd or
even—even intersections as discussed in [2].

Plots such as those in Figs. 4 and 5 provide approximate
values for (a,,,,k,,,) which can then be refined as in

(31)
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Fig. 5. Odd TM mode zero curves for u(m values) and v(n values).

(24)-(27). For the TE modes we use the same procedure but
work with the zeros of u, and v, rather than u and v. Plots
of these values are similar to the TM case.

This was done for the special case ng=§&;=1 and the
results are given in Tables I and II for m,n < 8 in the form
(@, my) Where q,,,=+/2k,,, . (Compare with the results
in [1])

Remark: The cumbersome method of graphically deter-
mining (a,,,, k,,,) for arbitrary £, and 7, can be avoided by
using the values in Tables I and II (or those in [1] in the
following way. Starting with (a,,,,, k,,,,) from the tables, move
in small steps from (£y, 1) =(1,1) to (£,,7,) by using the
Newton-Poisson method to find (a,,,, k,,,,) at each step with
the previous values used as starting values. This method is
very fast and was used to generate the values of g,, and
k.., for m 4+ n <4 (ie., the first nine TM modes and the first
eight TE modes) with £, =1 and 0.1 < 1y <1, as illustrated
in Figs. 6-9. These values were also used to generate the
highly accurate polynomial /rational approximations given in
Tables III and IV. A comparison of the lowest TE and TM
eigenvalues from various sources [1], [2], [10], [19] is given in
Table V.

IV. PoweR HANDLING CAPABILITY OF PARABOLIC
WAVEGUIDES

In [3], Baum defines the efficiency factor, vy, for a planar
domain Q as '

12

(32)

=R

2
kz( k%)l/4 fn!wjlf

0
mSXI Uil

where 0 < k; < k, are the two lowest nonzero TE eigenval-
ues and y, is the TE eigenfunction corresponding to ;.
Using the methods of the previous two sections, we inves-
tigated y = y(n,) for confocal parabolic domains, (), with
£0=1and 0.1 < 5y <1. (The integral on the right-hand side
of (32) was evaluated numerically by using a 24-point Gauss-
ian product formula, which is exact on polynomials up
through order 47.) The results are given in Fig. 10, where we
see that the overall maximum occurs at ny=1 with y(1) =
0.4600. A secondary maximum occurs at 7, = 0.14083 with
¥(0.14083) = 0.4234. Intermediate between these maxima, vy
attains a minimum value of zero at 1, = 0.31297. As per the
discussion in [4], these extreme values occur at crossing
points for the second and third TE eigenvalues (for the

maxima at ny =1 and n, = 0.14083) or the crossing point for
the first and second TE eigenvalues (1, = 0.31297).

We can interpret these results by comparison with the
efficiency factor for a rectangle with aspect ratio r =
height /width. In this case the maximum efficiency factor is
0.4653 = (3/64)!/* which is attained at r=2 and r=1/2.
Between these two maxima, the efficiency factor reaches a
minimum of zero at r =1.

For a confocal parabolic region, £}, with £, = 1, the aspect
ratio of the height to the width is given by

4ng
=— 3
’ 1+n(2) (33)

If the efficiency factor depended only on r, we would then
expect y to be maximized at r =2 and r=1/2 and mini-
mized at r=1 by analogy with the rectangle. That is, we
would expect from (33) to see maximum efficiency at ny=1
(for r=2) and at n,=4—y15 = 0.12702 (for r =1/2). The
corresponding minimum would then be at n0=2——\/§ =
0.26795 (for r =1). Since these values are close to the true
values of ny=1, n,=0.14083, and 7, = 0.31297, we con-
clude that for parabolic waveguides the aspect ratio of the
cross section is of prime importance in determining the
power handling capability—just as in the case of rectangular
and triangular waveguides [16], [17], [20].

V. CoNCLUSION

Mode analysis for confocal coaxial parabolic regions is
greatly simplified by using analytic continuation to evaluate
parabolic cylinder functions. When combined with
Newton-Poisson shooting and homotopy methods, this con-
tinuation technique easily generates the separation constants
and eigenvalues of arbitrary parabolic regions, and has been
applied to the problem of determining power handling capa-
bilities for such regions.

APPENDIX
NONSINGULARITY OF NEWTON’S METHOD

We need two technical lemmas to show that the gradient
matrix, Vf, in (24) is nonsingular,

Lemma 1: Let y satisty (16) with y2(0)+ y2(0) # 0. Then,
for any x> 0, y*(x)+ y2(x,) # 0. Moreover, if (y(0), y,(0))
=(1,0) or (0,1) and y,(x,) =0, then y, (x,) #0.

Proof: If y%(xy)+ y2(x4) =0 for some x,, then y(x)=0
for all x by (19) and (20). This would contradict the assump-
tion that y*(0)+ y2(0) # 0. Now suppose that y,(x,)=0. By
(16) v, (xg) = —(x3 /4+ a)y(x,). Since y(x,)#0,y,,(x,) is
nonzero unless a = — x% /4. Case 1. suppose that
(y(0), ¥,(0))=(1,0) and that a=—x3/4. Then y (x)=
—(x%/4+ A)ytx) =(x¢/4— x%2 /D y(x)>0, and y(x) is in-
creasing for x near zero. Thus y(x) and y (x) increase
together until (xg /4— x2 /4)y(x) changes sign, which occurs
at x = xy. In particular, this means that at x =xg,y, is
nonzero, which is a contradiction. Case 2: suppose that
(y(0),y,(0)=(0,1) and a=—xZ%/4. Again, y, (x)>0 for
0<x<x, and y,(x4)> 0, which leads to a contradiction.
Thus in either case if (y(0), y,(0)) =(1,0) or (0,1) and y,(x,)
=0, then y, (x,)# 0.

Lemma 2: Let k;, =k} (a, &) and k; =k, (a,n,) be de-
fined by (30) and (31) respectively. Then 9k, /da <0 and
ok, /da> 0.
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TABLE 1
VALUES OF THE SEPARATION CONSTANT, &,,, (UPPER NUMBERS), AND THE EIGENVALUE PARAMETER, ¢,,, = ,/ 2k, (LOWER NUMBERS),
roR THE TE MobDes WHERE £, =1,
m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=17 m=28
n=90 0.810270 1.937563 3.168368 4.429902
2.701082 3.641106 4.364091 4976563
n=1 0.0 1.331693 2.547107 3.796421
2.057677 3.213575 4.020361 4,680999
n=2 —0.810270 0.0 0.572512 1.415250 2.412445
2.701082 3.736848 4.501579 5.142995 5.704098
n=3 —1.331693 0.0 0.932287 1.900718
3.213575 4139591 4.835016 5.431798
n=4 —1.937563 —0.572512 0.0 0.513563 1.251464
3.641106 4.501579 5.158541 5.735390 6.254941
n=>5 —2.547107 -0.932287 0.0 0.817493
4,020361 4.835016 5.455439 6.001765
n==6 —3.168368 —1.415250 -0.513563 0.0 0.481947
4,364091 5.142995 5.735390 6.261505 6.744475
n=7 —3.796421 —1.900718 —0.817493 0.0
4.680999 5.431798 6.001765° 6.507896
n=8  —4.429902 —2.412445 —1.251464 —0.481947 0.0
4,976563 5.704098 6.254941 6.744475 7.196398
TABLE 11
VALUES OF THE SEPARATION CONSTANT, 4,,, (UPPER NUMBERS), AND THE EIGENVALUE PARAMETER, ¢,,,, = v2k,,, (Lowsr NUMBERS),
ForR THE TM Mobnes WHERE £, = 7,
m=0 m=1 m=2 m=3 m=4 m=35 m=6 m=7 m=8
n=0 0.0 0.620562 1.545732 2.621655 3.756773
2.832878 3.766949 4.501991 5.123188 5.670876
n=1 0.0 1.024922 2.072334 3.183781
3.335199 4.153264 4.823688 5.404627
n=2 —0.620562 0.0 0.534856 1.312944 2.245691
3.766949 4.526837 5.170907 5.738399 6.249205
n=3 —1.024922 0.0 0.859836 1.764771
- 4153264 4.860511 5.463204 5.999933
n=4 ~15475732 —0.534856 0.0 - 0.494870 1.197973
4.501991 5.170907 5.747330 6.268620 6.747111
n=>5 —-2.072334 —0.859836 0.0 0.780581
4.823688 5.463204 6.014112 6.512936
n=6  —2.621655 —1.312944 —0.494870 0.0 0.470105
5.123188 5.738399 6.268620 6.751731 7.201158
n=17 . —3.183781 —1.764771 —0.780581 0.0
5.404627 5.999933 6.512936 6.980356
n=8 -3.756773 —2.245691 —-1.197973 ~0.470105 0.0
5.670876 6.249205 6.747111 7.201158 7.625300
10 —r
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Fig. 6. TM mode eigenvalues.

Fig. 7. TM mode separation constants,
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Fig. 9. TE mode separation constants.
1.g. 8. TE mode eigenvalues.
TABLE III
EIGENVALUE AND SEPARATION CONSTANT APPROXIMATIONS FOR THE FIRsT THREE TE MoDES
Maximum Relative Error
Mode m, n Approximation of the Separation Constant, a, and the Eigenparameter g = ﬂ 7o Interval (Percent)
TE1, 1 a=2.596929—5.094294 /1, +3.870710 /0§ — 1.651439 /03 +0.2780933 / n§ [0.7, 1.0] 0.002
g = 0.5312255 +2.268693 / 1o — 1.038856 /03 + 0.3486636 / 73 — 5.20495 x 1072 /3 [0.7, 1.0] 0.0001
a=1.78076—2.734267 / ¢ +1.296147 / n3 — 0.396096 / n3 +4.73622x 102 / 08 [0.5,0.7) 0.0005
q = 0.669376 + 1.874459 /5, — 0.614325 /n§ +0.144252 /13 —1.49289 % 1072 / nd [0.5,0.7] 0.00006
a=1.144576 — 1462181/ m, +0.334325 / g — 7.02466 X 10~2 / 3 +5.64386 X 103 / [0.3,0.5] 0.003
g =0.849418 + 1.52112/ n, — 0.352046 /03 +5.69694 X 102 /3 — 3.94283x 1073/ nd [0.3,0.5] 0.0007
a = 0.689404 —0.871946 / n +4.44974 X 1072 /03 — 6.46391 X 1073 /03 +3.44078 X 10~ * /nd  [0.2, 0.3] 0.0003
g =1.164598+1.130233 /n, —0.168161 /7 +1.81028 X 1072 /n3 —8.31538 X 10~ %/ [0.2,0.3] 0.0003
a=0.517328-0.729115 /7m0 ~ 440151 X 10™* /13 — 1.19650 X 10 =4 /03 +5.39856 X 10~6 /03 [0.1, 0.2] 0.0006
q =1.626340+0.768274 / m, — 603590 X 10 "2 /% +3.6451 X 1073 /3 — 9.51838 X 105 / [0.1,0.2) 0.005
TE2,0 a=—5.15875x 1072 +0.370382 5, +0.30644877 +0.365604n3 —0.180576 73 {0.7, 1.0] 0.0002
g =3.755891 +3.67244 X 10> — 2.616730703 + 203404973 —0.508851n¢ [0.7, 1.0) 0.00006
a=—3.40302X 102 +0.2370577, +0.0661645n% — 3.814443 x10 ~2n3 —1.31087 x 10~ 2 [0.5,0.7) 0.00006
q = 3.709501 +0.2748057, — 3.07392473 +2.42331973 — 0.6328057] [0.5,0.7] 0.00002
a=2.54804 X107 —4.54712 X 10~ 21 + 1.48497793 — 1.1115n3 +0.51525n3 [0.3,0.5] 0.00003
g =3.727512+0.125543 7, — 2.60649873 + 1.768076 3 — 0.286 11673 [0.3,0.5] 0.00003
a=3.37434X10"* - 9.72281 X 1031, + 1.26980673 —0.5387283 — 5.43081 X 10273 [0.1,0.3] 0.0002
g = 3.736535 + 8.85305 X 10 31y —2.02837273 +0.4659173 + 0.838816 7 [0.1,0.3] 0.00004
TEO,2 a = —0.124808 + 0.840906 / 7, — 2.150925 / n§ +0.886461 /13 —0.139533 /n§ [0.7, 1.0) 0.00006
g = —0.223678 +5.144419 / n, — 3.286735 /7 + 1.268121 / —0.201045/77!‘J [0.7, 1.0] 0.0002
a= 0216079 —0.417672/ m, — 0.866347 / 13 +0.302681 / n3 —3.96405 X 102 /nd [0.5,0.7] 0.0004
q = 0371520 +3.463166 / 1 — 1.495452 /nf +0.415015 /3 — 4.78368 X 10~2 / 0 [0.5,0.7) 0.0002
a=0.75421-1.524952 /71 - 6.27731 X 10> /n} +3.94451X 1073 /03 - 5.13098 X 104 /3 [0.3, 0.5] 0.0005
q = 0993797 +2.219658 / 5 — 0.555766 /15 +9.68244 X 102 /3 = 7.11685X 103 / (0.3, 0.5] 0.002
a=0.772631-1.562411/n, +1.84487% 10 % /g — 279513 X 1073 /0 + 1.45653 x 104 /nd  [0.2,0.3] 0.00006
g =1.554807+1.506145 /o — 0.211694 / 03 +2.23491 X 1072/ ~ 1.02011 X 103 / [0.2,0.3} 0.0003
a=0.689837—1.496185 /o — 1.65905 X 103 /02 —4.98358 X 105 /03 +3.5604 X 10~6 /3 [0.1,0.2] 0.0003
g = 2.110509 +1.069456 / 1, —8.12742X 1072 /n +4.80549 X 1073 /93 — 1.23783x 10" /n¢  [0.1, 0.2] 0.005

Proof: By (28)-(31), k, (a,ng) =k (—a,n,) so we
need only show that 3k, /da <0. By definition, & is the
mth zero of u in (28). By the Sturm separation theorem [18],

completing the proof.

the zeros of u and u, are simple and interlace each other.

We now show that the distance between a zero of u and the
next consecutive zero of u, decreases with a. Similar argu-

~(x2/4+ Qu, 4, =

ments show that the distance between a zero of u, and the
next consecutive zero of u also decreases with a, thus

Suppose that u(xy)=0 and u,(x,)>0. Let 4(x,)=0 and
,(xg) =u,(xy) with u,, =

_(xz
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TABLE 1V

411

EIGENVALUE AND SEPARATION CONSTANT APPROXIMATIONS FOR THE FIRsT THREE TM MoDES

Maximum Relative Error

Mode m,n Approximation of the Separation Constant, @, and the Eigenparameter g = \/27? 1o Interval (Percent)
TMO0,0  a=1.70632~3.557211/ 7, +2.942827 /2 ~1.319285 /3 +0.227349 /nd [0.7, 1.0 0.002
q = 4.48325Xx 1072 +4.810751 /n, — 2.785871 /73 + 0.875188 /03 — 0.112022 / n3 [0.7, 1.0] 0.00003
a =1.027789 — 1.590098 / o +0.79150 / n& —0.26778 / 3 +3.36409 X 10~2 /nd [0.5,0.7) 0.0006
q = 0.268061 +4.220208 / 79 — 2.199295 / n% +0.615888 / n3 ~ 6.89754 x 102 / ¢ [0.5,0.7] 0.0002
a = 0.560393 —0.649577 / ¢ +7.60503 X 102 / nZ —2.40106 X 102 / 3 +2.26595x 1073 /78  [0.3,0.5] 0.002
q =1.220774+2.369542 / 1, — 0.840459 / m7 + 0.168804 / 3 ~ 1.33536 X 10~ 2 /03 [0.2,0.5] 0.003
a=0.388644—0.413136 /1y —4.63114 X 102 /02 + 4.17285x 1073 /n3 — 1.69243x10~* /93 [0.2,0.3] 0.00004
g =2.312298+0.962536 / n4 — 0.153552 / n% +1.84657X 1072 /03 —9.25839x 10~ * / 03 [0.2,0.3] 0.0004
a=0.487549—0.487708 / 1y — 2.50051 X 10 "2/ n3 +1.43627x 1073 /03 ~3.58552x 105 /5% [0.1,0.2] 0.002
q = 2765350+ 0.588592 /g — 3.64749 X 1072 /3 +2.0048 X 103 /03 — 5.00854 X 105 /¢ [0.1,0.2] 0.003
™1, 1 a =4.501492—9.12098 / 9, +7.266212 /02 —3.193323 / 03 +0.546599 / n3 {0.7, 1.0] 0.003
g =0.395787 +4.821031 / 0o — 2.600728 / 3 + 0.828388 / 3 ~ 0.10928 / g [0.7, 1.0] 0.00003
a=2.86579—4.386343 / 1, +2.096153 /03 —0.670136 / n3 + 8.24485 X 1072 / 3 [0.5,0.7] 0.0008
q = 0.630917+4.19092/ no — 1965587 / n +0.542911 / n{ — 6.09916 X 102 / [0.5,0.7] 0.0002
a=1.752483 - 2.141137 /o +0.384543 / n% — 8.57397X 1072 /3 + 7.08389 X 103 / 03 [0.3,0.5] 0.003
q = 1.472579+2.549088 / my — 0.754941 / m3 +0.14289 /73 — 1.10178 X 1072 /n3 [0.3,0.5] 0.002
a=1.196551—1.41065/ no +2.13504 X 10~ 2 /7% — 4.88571X 1073 /03 +2.94922 X104 /04 [0.2,0.3] 0.0002
q = 2.346607 + 1.422418 / ng — 0.204756 / nZ +2.24217x 1072 /53 — 1.05329x 1073 / 0 [0.2,0.3] 0.0003
a=1.050923 — 1.286222 /o — 1.87849 X 102 /nf} +9.01076 X 10— * /n§ —~1.94463x1075 /% [0.1,0.2] 0.0002
q=2.903135+0.978869 / no — 7.04125X 102 /n& + 4.10207 X 1072 /0§ — 1.05171x 10~ * /n¢  [0.1,0.2] 0.004
TM 2,0  a=—2385995+8.5904827, — 12.7305593 + 9.811075793 — 2.664454n4 (0.7, 1.0] 0.0005
q = 6.093106 — 2.5996877, — 9.91782 X 10~ 212 +0.45772973 — 8.50192X 10 2n3 [0.7, 1.0] 0.0002
a = —3.199621+13.4697, — 23.74494 1% +20.8986973 — 6.8619797 [0.5,0.7] 0.002
q = 6.843306 — 6.9256767, + 9.312155n — 8.69513873 +3.271385n¢ [0.5,0.7] 0.0002
a = —5.356343 +31.04948n, — 77.79276 93 +95.15671n3 — 45.31746m [0.35, 0.5] 0.003
q = 7.952511—15.924317, +36.85081n3 — 46.364367m3 +22.69698 1 [0.35, 0.5] 0.0003
= —8.586632 + 68.251987, —239.4341793 + 409.1163753 —275.257504 [0.25, 0.35] 0.002
g = 9.274474 — 31.02869m, + 1019666705 — 171.8812n3 + 113.953117 [0.25, 0.35) 0.0003
a = —13.35043 + 145.7653n, — 715.202312 + 1714.301n3 — 1625.02573 [0.175, 0.25) 0.003
q = 10.70829 — 54.1884 7, +243.1092n% — 556.439973 + 509.07211] [0.175, 0.25] 0.0003
a = —23.22342 + 386.3231n, — 2932.606 17 +10867.9513 — 15885.191¢ (0.1, 0.175] 0.03
q = 13.04974— 110.80617 +761.253793 ~ 2681.1257n3 + 3798.857n¢ [0.1, 0.175) 0.004

TABLE V
ComPARISON OF EIGENPARAMETERS, 4, =/ 2K,,, ; AND SEPARATION CONSTANTS 4,,,, FOR £ = =1 FROM VARIOUS SOURCES
Kenney-Overfelt Zagrodzinski Morse—Feshbach Spence-Wells Larsen

MOde m’ n amn qmn amn qmn amn qmn amn qmn amn qmn
T™O,0 0.0 2.832878 0.0 2.83 0.0 2.8327 0.0 2.833 0.0 2.85
™1,1 0.0 3.335199 0.0 3.34 0.0 3.3353 0.0 3.335 0.0 335
™2,0 0.620562 3.766949 0.58 3.7 - - - - 0.62 3.78
T™3,1 1.024922 4.153264 1.02 4.16 - - - - 1.02 4.16
T™™ 4,0 1.545732 4.501991 1.54 4.49 - - - - - -
™2,2 0.0 4.526837 0.0 453 0.0 4.5268 0.0 4.527 0.0 4.50
TE1,1 0.0 2.057677 0.0 2.06 - - 0.0 2.061 0.0 2.08
TE2,0 0.810270 2701082 0.81 27 - - - - 0.81 2.72
TE3, 1 1.331693 3213575 . 133 321 - - - - 1.33 322
TE4,0 1.937563 3.641106 1.94 3.64 - - - - - -
TE2,2 0.0 3.736848 0.0 3.74 - - 0.0 3.737 0.0 3.73
TES, 1 2.547107 4.020361 2.54 4.02 - - - - - -
TE3,3 0.0 4.139591 0.0 4.14 - - 0.0 4.147 0.0 4.14

/4+a+ e, for e>0. Let x; and £, denote respectively
the first zero larger than x, of u, and #4,. Now define
w=10,=u, then w,=—(x2/4+ a)o — eil.

As in Lemma 1, we may assume that x2/4+a>0. At
x=x, 0=0, w,=0, and w,, = — el (x;) <0. Thus w(x,
+ &) < 0 for & small and positive. Now suppose that w(x,)=0
for x4 < x, < £,. Then w,(x,) = — efi(x,) < 0 since & is posi-
tive on (x4, £;). This implies that w <0 over [x, £,] and
hence 0 < #, <u, over the same interval. That is, the dis-
tance between the zeros of u and u, decreases as a in-
creases. Similar arguments hold for u(xy) = 0 and u,(x,) < 0.

Remark: Essentially the same proof shows that dk}, /da <
0 and 9k, /da > 0 for the TE modes.

Theorem: The gradient matrix, Vf, is nonsingular at (a, k)
= (a5 K ) for m>0,n>0.

Proof: First consider the TM mode case: fla, k)=
u(V2k £, a), fa, k)= v(y2k n,,a), where the second argu-
ment denotes the dependence on a. The gradient matrix is
nonsingular if detVf = (8f, /da)df,/dk) —
(3f, / 80k )@f, /da) = 0. By definition, u(y/2k;,(a) &y, a) =0,

v(ﬂk; (a) my, a) = 0. Differentiating with respect to a gives
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Fig. 10. Parabolic waveguide efficiency factors.
af, /9a =u, = u &y /2+4/2k} Ndk,), /da), 3f,/6a=uv,=

v,(ng/2y2k,, Ndk, /da). Also df, /dk = u &, /2¢—
3f, /dk = v,my /2V2k . Therefore, at a=a,,, and k;, =

= k,.n, det Vf = (&gnou,, /8k,, Xdk, /da — dk ], /da) aé 0
since u,, v,, and (dk, / da — dk} /da) are all nonzero by
Lemmas 1 and 2.

For the TE modes we find det Vf = (&ymol, U,/
8k, Ndk, /da — dk}, /da) + 0, again by Lemmas 1 and 2.
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